ITERATIVE THRESHOLDING ALGORITHM FOR SPARSE INVERSE COVARIANCE ESTIMATION By
نویسندگان
چکیده
The `1-regularized maximum likelihood estimation problem has recently become a topic of great interest within the machine learning, statistics, and optimization communities as a method for producing sparse inverse covariance estimators. In this paper, a proximal gradient method (G-ISTA) for performing `1-regularized covariance matrix estimation is presented. Although numerous algorithms have been proposed for solving this problem, this simple proximal gradient method is found to have attractive theoretical and numerical properties. G-ISTA has a linear rate of convergence, resulting in an O(log ε) iteration complexity to reach a tolerance of ε. This paper gives eigenvalue bounds for the G-ISTA iterates, providing a closed-form linear convergence rate. The rate is shown to be closely related to the condition number of the optimal point. Numerical convergence results and timing comparisons for the proposed method are presented. G-ISTA is shown to perform very well, especially when the optimal point is well-conditioned.
منابع مشابه
Newton-Like Methods for Sparse Inverse Covariance Estimation
We propose two classes of second-order optimization methods for solving the sparse inverse covariance estimation problem. The first approach, which we call the Newton-LASSO method, minimizes a piecewise quadratic model of the objective function at every iteration to generate a step. We employ the fast iterative shrinkage thresholding method (FISTA) to solve this subproblem. The second approach,...
متن کاملIterative Thresholding Algorithm for Sparse Inverse Covariance Estimation
The `1-regularized maximum likelihood estimation problem has recently become a topic of great interest within the machine learning, statistics, and optimization communities as a method for producing sparse inverse covariance estimators. In this paper, a proximal gradient method (G-ISTA) for performing `1-regularized covariance matrix estimation is presented. Although numerous algorithms have be...
متن کاملA Coordinate-wise Optimization Algorithm for Sparse Inverse Covariance Selection
Sparse inverse covariance selection is a fundamental problem for analyzing dependencies in high dimensional data. However, such a problem is difficult to solve since it is NP-hard. Existing solutions are primarily based on convex approximation and iterative hard thresholding, which only lead to sub-optimal solutions. In this work, we propose a coordinate-wise optimization algorithm to solve thi...
متن کاملAn Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint
We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted ppenalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem. Use of such p-penalized problems with p < 2 is often advocated when one expects ...
متن کاملSparse permutation invariant covariance estimation
The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in high-dimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lasso-type penalty. We establish a rate of convergence in the Frobenius norm as both data dimension p and sample size n are allowed to grow, and show that the rate ...
متن کامل